RDCH 702	Last Name:
Quiz 5	
Assigned 2 December 15	First Name:
Due 9 November 15	
Post questions to the blog (http://rdch702.blogs	spot.com/2015/12/fall-2015-rdch-702-quiz-5.html)

Quiz Topics Lecture 9 Separations Lecture 10 In reactor chemistry

Use the lecture notes, chart of the nuclides, table of the isotopes, and web links to answer the following questions.

- (30 Points) An experiment is performed with ²⁴¹Am. Data from the experiment is below. In this study the extraction of Am into an organic phase is examined. The ligand (L) is a protonated organic soluble ligand; it is only present only in the organic phase. At the start of the experiment all the Am is in 1 mL of aqueous phase, listed as Am aq Initial (Bq/mL) in the table. A 1 mL organic phase containing the ligand L at different concentrations is added to the aqueous phase and mixed for 5 minutes. After phase separation a 100 μL sample is removed and analyzed by scintillation counting, with the results listed as Am org (Bq/mL).
 - 1.1. Complete the data table below. Am aq final (Bq/mL) is the equilibrium Am concentration in the aqueous phase. Ignore any error in the values.

Am aq Initial (Bq/mL)	[L] M	Am org (Bq/mL)	Am aq final (Bq/mL)	K _d
1000	7.50E-04	572		
1000	1.00E-03	760		
1000	2.50E-03	980		
1000	5.00E-03	997		

- 1.2. The extracted Am species is AmL_x. What is the value of x?
- 1.3. What type of solvent extraction mechanism is responsible for the Am extraction?

- 2. (20 Points) The separation of Pu from U in PUREX is achieved by reduction.
 - 2.1. What is the reduced metal ion that is backextracted from the organic phase to the aqueous

phase? _____

2.2. Select a suitable reductant that can be used in the PUREX process.

 $\square H_2 \qquad \square [Fe(CN)_6]^{4-} \qquad \square NH_3OH^+NO_3^- \qquad \square Na \qquad \square U^{4+} \qquad \square Fe(H_2NO_3S)_2$

2.3. What is a suitable nitric acid concentration for the initial extraction of U and Pu into the organic

phase? _____

2.4. What is the organic ligand in the PUREX process? _____

- 2.5. What is the oxidation state of initially extracted uranium? ______
- 3. (30 Points) Consider an oxide fuel in a reactor that has $100 \% UO_2$ at the beginning of life. Assume the initial charge of the uranium is 1000 g/ kg of metal. This means uranium is 100 % of the metal in the fuel at the beginning of life. As the fuel fissions actinides and fission products build in. Answer the following.
 - 3.1. What percentage of the uranium remains after a burnup of 52.0 MWd/kg HM?

_____%

3.2. How much Pu is in the fuel after a burnup of 39.0 MWd/kg HM?

_____ g/kg of metal

- 3.3. At a burnup of 39.0 MWd/kg HM which fission product has the highest concentration in g/kg of metal?
- 3.4. Would you expect to find more Zr or Mo in used nuclear fuel?
- 3.5. Estimate the percentage of remaining uranium at 100 MWd/kg HM.

_____%

3.6. Estimate the necessary burnup that results in the removal of 50 % of the uranium.

_____ MWd/kg HM

- 4. (10 Points) Provide a route for the separation of uranium from plutonium with a strong base anion exchange resin using a nitric acid aqueous phase.
- 5. (10 Points) What is the basic premise for separation by pyroprocessing.